Atomistic simulation of surface functionalization on the interfacial properties of graphene-polymer nanocomposites
نویسندگان
چکیده
Articles you may be interested in Broadband saturable absorption and optical limiting in graphene-polymer composites Appl. Microwave and mechanical properties of quartz/graphene-based polymer nanocomposites Appl. Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications J. The importance of bendability in the percolation behavior of carbon nanotube and graphene-polymer composites Graphene has been increasingly used as nano sized fillers to create a broad range of nanocomposites with exceptional properties. The interfaces between fillers and matrix play a critical role in dictating the overall performance of a composite. However, the load transfer mechanism along graphene-polymer interface has not been well understood. In this study, we conducted molecular dynamics simulations to investigate the influence of surface functionalization and layer length on the interfacial load transfer in graphene-polymer nanocomposites. The simulation results show that oxygen-functionalized graphene leads to larger interfacial shear force than hydrogen-functionalized and pristine ones during pull-out process. The increase of oxygen coverage and layer length enhances interfacial shear force. Further increase of oxygen coverage to about 7% leads to a saturated interfacial shear force. A model was also established to demonstrate that the mechanism of interfacial load transfer consists of two contributing parts, including the formation of new surface and relative sliding along the interface. These results are believed to be useful in development of new graphene-based nanocomposites with better interfacial properties.
منابع مشابه
Functionalization effect on the thermal conductivity of graphene- polymer nanocomposites
(2014) Surface functionalization on the thermal conductivity of graphene–polymer nanocomposites. which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted. Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflec...
متن کاملThermal Transport in Graphene-Polymer Nanocomposites
Graphene-polymer nanocomposites have attracted considerable attention due to their unique properties, such as high thermal conductivity (~3000 W mK), mechanical stiffness (~ 1 TPa) and electronic transport properties. Relatively, the thermal performance of graphene-polymer composites has not been well investigated. The major technical challenge is to understand the interfacial thermal transport...
متن کاملA Molecular Dynamics Study of Polymer/graphene Nanocomposites
In this work, we study three hybrid polymer/graphene interfacial systems (polystyrene/graphene, poly(methyl-methacrylate)/graphene and polyethylene/graphene) through detailed atomistic molecular dynamics (MD) simulations. Density profiles, structural characteristics and mobility aspects are being examined at the molecular level for all model systems. In addition, we compare the properties of th...
متن کاملDetailed simulation of the role of functionalized polymer chains on the structural, dynamic and mechanical properties of polymer nanocomposites.
To systematically study the effect of functionalized chain groups on polymer nanocomposites, we perform our simulation work in the following two ways. In the case of dilute loading of nanoparticles (NPs) with different geometries (spherical, sheet-like, rod-like NPs), we adopt coarse-grained molecular dynamics simulation to study the structural, dynamic and mechanical properties of polymer nano...
متن کاملA study on the tailoring of interfacial shear strength between graphene and polymer by addressing defects in graphene
A molecular dynamics simulation study on the interfacial strengthening between defected graphene and polypropylene matrix is implemented. As intrinsic defects in single layer graphene, oxidation, Thrower-Stone-Wales(TSW) defect, and Adatom defect are considered. On the transversely isotropic nanocomposites unit cell embedding different defected graphene, transversely isotropic stress-strain rel...
متن کامل